References

Albericci, M., Braekman, J. C., Daloze, D., Tursch, B., DeclercQ, J.-P., Germain, G. \& Van Meersche, M. (1978). Bull. Soc. Chim. Belg. 87, 487-492.
Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., HummelinkPeters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
Bernstein, J., Shmueli, U., Zadock, E. \& Kashman, Y. (1974). Tetrahedron, 30, 2817-2824.
Hale, R. L., Leclerce, J., Tursch, B., Djerassi, C., Gross, R. A. Jr, Weinheimer, A. J., Gupta, K. \& Schleuer, P. J. (1970). J. Am. Chem. Soc. 92, 2179-2180.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
Hossain, M. B., van der Helm, D., Matson, J. A. \& Weinheimer, A. J. (1979). Acta Cryst. B35, 660-666.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Karlsson, R. (1977). Acta Cryst. B33, 2027-2031.
Motherwell, W. D. S. \& ClegG, W. (1978). PLUTO78. A program for drawing crystal and molecular structures. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Strouse, C. E. (1976). Rev. Sci. Instrum. 47, 871-876.
Trueblood, K. N. (1978). Acta Cryst. A34, 950-954.
Yao Jia-xing (1981). Acta Cryst. A37, 642-644.

SHORT-FORMAT PAPERS

Contributions intended for publication under this heading should follow the format given in the Checklist for Authors |Acta Cryst. (1985). C41, 1-4].

Acta Cryst. (1986). C42, 376-378

Structure of 5,11-Bis(chloroformyl)-2,8-dimethyl-6H,12H-dibenzo[b, $f \| 1,5]$ diazocine at 163 K

By S. B. Larson* and C. S. Wilcox
Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 19 September 1985; accepted 10 October 1985)

Abstract. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}, M_{r}=363.24$, monoclinic, $P 2_{1} / c, \quad a=10.0742(15), \quad b=9.9129$ (18), $\quad c=$ 8.1320 (12) $\AA \mathrm{A}, \quad \beta=95.581(10)^{\circ}, \quad V=808.2$ (2) \AA^{3}, $Z=2, \quad D_{x}=1.492, \quad D_{m}(295 \mathrm{~K})=1.424 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Mo} K \alpha)=0.71079 \AA, \quad \mu=4.133 \mathrm{~cm}^{-1}, \quad F(000)=$ $376, R=0.0378$ for 1916 observed reflections. Molecules have a center of symmetry. The eightmembered central ring is in a chair conformation. The planes of the NCOCl groups make angles of 65.79 (4) ${ }^{\circ}$ with the planes of the benzo bridges such that the Cl and O atoms are in van der Waals contact with the intramolecular H atoms [$\mathrm{Cl} \cdots \mathrm{H}(2), 3.02(2) ; \mathrm{O} \cdots$ $\mathrm{H}(7 B), 2.51(2) \AA$. The configuration at N is essentially planar and conjugation is evident in the shortened $\mathrm{N}-\mathrm{C}$ (benzo) and $\mathrm{N}-\mathrm{C}$ (carbonyl) bonds [1.439 (2) and 1.347 (2) \AA respectively].

Experimental. Title compound prepared by method of Cooper \& Partridge (1957). Data crystal obtained by cutting a corner from a large blocky crystal. A summary of data collection and structural refinement is given in Table 1.

[^0]Structure solved by MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) and Fourier techniques; refined by full-matrix least squares (SHELX76, Sheldrick, 1976); all atomic positional parameters refined as well as anisotropic thermal parameters for non- H atoms and isotropic for H atoms. Electron density difference map calculated at $R=0.06$ revealed H atoms as peaks of $0.67-1.02 \mathrm{e} \AA^{-3}$. Scattering factors and anomalous-dispersion corrections for all non-H atoms from International Tables for X-ray Crystallography (1974); H scattering factors from Stewart, Davidson \& Simpson (1965). Atomic parameters are in Table 2, bond lengths and angles in Table 3. \dagger Atom labeling is shown in Fig. 1 and packing in Fig. 2. Principal computer programs given by Gadol \& Davis (1982); program for least-squares-planes' calculations from Cordes (1983).

[^1]Table 1. Crystallographic summary for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$

(A) Data collection (163 K) ${ }^{\text {a,b }}$	
Mode	ω scan
Scan range	Symmetrically over 1.2° about $K u_{1.2}$ maximum
Background	Offset 1.2 and -1.2° in ω from $K u_{1.2}$ maximum
Scan rate (${ }^{(} \mathrm{min}^{-1}$)	3.0-6.0
Exposure time (h)	37.1
Stability analysis ${ }^{\text {f }}$	
Check reflections	002,020,400, $\overline{2} 2{ }^{2} 1$
Computeds	-0.0003 (2)
t	0.000005 (5)
Correction range (on I)	1.000-1.004
2θ range (${ }^{\circ}$)	4.0-60.0
Range in $h k l, \mathrm{~min}$.	0,0,-11
max.	14,13,11
Total reflections measured, unique	2357, 2357
Crystal volume (mm^{3})	0.0180
Crystal faces, dimensions (mm)	$\begin{aligned} & \{100\}, 0.24 ;(011),(0 \overline{1} \overline{1}), 0.23 ; \\ & (01 \overline{1}), \sim(0 \overline{1} 1), 0.30 \end{aligned}$
Absorption correction, transmission-factor range	0.906-0.921
(B) Structure refinement ${ }^{\text {c }}$	
Instability factor $p^{\text {b }}$	0.04
Reflections used ($F \geq 4 \sigma_{F}$)	1916
No. of variables	141
Goodnes of fit, S	1.462
$R, w R$	$0.0378,0.0455$
R for all data	0.0504
Max. shift/e.s.d.	0.011
Max., min. in difference map (e \AA^{-3})	0.46, - 0.21

Notes: (a) Unit-cell parameters were obtained by least-squares refinement of the setting angles of 45 reflections with $21.4<2 \theta<30 \cdot 6^{\circ}$. Crystal density was measured by flotation in aqueous ZnCl_{2}. (b) Syntex $P 2_{1}$ autodiffractometer with a graphite monochromator and a Syntex LT-1 inert-gas (N_{2}) low-temperature delivery system. Data reduction was carried out as described by Riley \& Davis (1976). Crystal and instrument stability were monitored by re-measurement of four check reflections after every 96 reflections. As detailed by Henslee \& Davis (1975), these data were analyzed to relate intensity to exposure time by the equation $y=1 \cdot 0+s x+t x^{2}$ where x is exposure time (h), y is fractional intensity relative to $x=0$ and s and t are coefficients determined by least-squares fit. (c) Function minimized was $\sum w\left(F_{n}-F_{c}\right)^{2}$, where $w=\sigma_{F}^{2}, \quad \sigma_{F}=F \sigma_{I} / 2 I$, and $\sigma_{I}=\left[N_{p k}+N_{\mathrm{bg} 1}+N_{\mathrm{bg} 2}+\right.$ (pI) $\left.\left.\right|^{2}\right|^{1 / 2}$.

Table 2. Positions and $U / U_{\text {eq }}$ for atoms in $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$

	x	y	z	$U^{*}\left(\AA^{2}\right)$
Cl	$0 \cdot 82930$ (4)	$0 \cdot 29718$ (4)	0.44400 (5)	0.02655 (12)
O	$0 \cdot 62255$ (12)	0.16746 (12)	0.5270 (2)	0.0296 (4)
N	0.61699 (12)	0.39432 (12)	0.5698 (2)	0.0165 (3)
C(1)	0.68394 (14)	0.52257 (15)	0.5853 (2)	0.0159 (4)
C(2)	0.79629 (15)	0.5373 (2)	0.6974 (2)	0.0183 (4)
C(3)	0.85674 (15)	0.6623 (2)	0.7187 (2)	0.0191 (4)
C(4)	0.80311 (15)	0.77553 (15)	0.6348 (2)	0.0180 (4)
C(5)	0.68992 (15)	0.7584 (2)	0.5238 (2)	0.0174 (4)
C(6)	$0 \cdot 63052$ (14)	0.63252 (15)	0.4948 (2)	0.0154 (4)
C(7)	0.48515 (15)	0.3824 (2)	0.6363 (2)	0.0181 (4)
C(8)	0.6710 (2)	0.2777 (2)	0.5232 (2)	0.0203 (4)
C(9)	0.8652 (2)	0.9124 (2)	0.6643 (2)	0.0249 (5)
H(2)	0.831 (2)	0.462 (2)	0.757 (2)	0.022 (5)
H(3)	0.937 (2)	0.673 (2)	0.799 (2)	0.025 (5)
H(5)	$0 \cdot 655$ (2)	0.832 (2)	0.463 (2)	0.022 (5)
$\mathrm{H}(7 A)$	0.472 (2)	0.463 (2)	0.699 (2)	0.016 (4)
$\mathbf{H}(7 B)$	0.486 (2)	0.302 (2)	0.710 (2)	0.016 (4)
$\mathrm{H}(9 A)$	0.808 (3)	0.981 (2)	0.632 (3)	0.049 (7)
$\mathrm{H}(9 B)$	0.901 (3)	0.923 (3)	0.778 (3)	0.059 (8)
$\mathrm{H}(9 C)$	0.945 (3)	0.916 (3)	0.608 (3)	0.056 (7)

* For non-H atoms, the U value is $U_{\text {eq }}$, calculated as $U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{A}_{i j}$
where $\mathbf{A}_{l j}$ is the dot product of the i th and j th direct-space unit-cell vectors.

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$

1	2	3	1-2	1-2-3
C(1)	N	C(7)	1.439 (2)	117.77 (12)
C(7)	N	C(8)	1.487 (2)	115.68 (12)
C(8)	N	C(1)	$1 \cdot 347$ (2)	125.74 (13)
C(2)	C(1)	C(6)	$1 \cdot 390$ (2)	120.80 (13)
C(2)	C(1)	N		119.70 (13)
C(6)	C(1)	N	1.394 (2)	119.39 (12)
C(3)	C(2)	C(1)	1.384 (2)	119.78 (14)
C(4)	C(3)	C(2)	1.395 (2)	120.96 (13)
C(5)	C(4)	C(9)	1.394 (2)	120.97 (14)
C(5)	C(4)	C(3)		118.17 (14)
C(9)	C(4)	C(3)	1.503 (2)	120.86 (13)
C(6)	C(5)	C(4)	1.394 (2)	121.95 (14)
C(1)	C(6)	C(5)		118.24 (13)
C(1)	C(6)	C(7)		121.93 (13)
C(5)	C(6)	$\mathrm{C}\left(7^{\text {i }}\right.$)		119.79 (13)
N	C(7)	C(6)		113.99 (12)
Cl	C(8)	0	1.788 (2)	119.17 (13)
Cl	C(8)	N		114.04 (11)
0	C(8)	N	$1 \cdot 199$ (2)	$126 \cdot 8$ (2)

Fig. 1. View of isolated molecule illustrating atom labeling and chair conformation of central eight-membered ring. Plane $\mathrm{N}, \mathrm{C}(7), \mathrm{N}^{\mathrm{i}}$, $C\left(7^{i}\right)$ makes an angle of $59.76(6)^{\circ}$ with the planes of the aromatic rings. Ellipsoids scaled to 50% probability.

Fig. 2. View of the contents of a unit cell. Closest contacts (indicated by thin lines) based on van der Waals radii are: $\mathrm{Cl} \cdots \mathrm{H}(2)\left(x, \frac{1}{2}-y, z-\frac{1}{2}\right), 2.99$ (2) \AA (c direction); $\mathrm{O} \cdots \mathrm{H}(9 A)$ $(x, y-1, z), 2.71(2) \AA$ (b direction; $\mathrm{H}(2) \cdots \mathrm{H}(9 C)\left(2-x, y-\frac{1}{2}\right.$, $\left.\frac{3}{2}-z\right), 2.46(3) \AA$ (a direction). Darkened molecules centered on $z=\frac{1}{2}$ plane; others on $z=0$ or 1 planes.

Related literature. Structures containing the carbamoyl moiety have been reported by Baggio, Becka, Amzel, Avey \& Poljak (1973) and Ganis, Avitabile, Migdal \& Goodman (1971).

References

Baggio, S., Becka, L. N., Amzel, L. M., Avey, H. P. \& Poljak, R. J. (1973). Cryst. Struct. Commun. 3, 531-534.

Cooper, F. C. \& Partridge, M. W. (1957). J. Chem. Soc. pp. 2888-2893.
Cordes, A. W. (1983). Personal communication.
Gadol, S. M. \& Davis, R. E. (1982). Organometallics, 1, 1607-1613.

Ganis, P., Avitabile, G., Migdal, S. \& Goodman, M. (1971). J. Am. Chem. Soc. 93, 3328-3331.
Henslee, W. H. \& Davis, R. E. (1975). Acta Cryst. B31, 1511-1519.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Riley, P. E. \& Davis, R. E. (1976). Acta Cryst. B32, 381-386.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1986). C42, 378-379

Stereochemical Studies of Oligomers. XVI.* 2,3-Butanediyl Bis(m-chlorobenzoate)

By Gabriele Bocelli
Centro di Studio per la Strutturistica Diffrattometrica del CNR, Via M. D'Azeglio 85, 43100 Parma, Italy
and Marie-Florence Grenier-Loustalot
Institut Universitaire de Recherche Scientifique, ERA 895, Avenue Philippon, 6400 Pau, France

(Received 21 May 1985; accepted 30 October 1985)

Abstract. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{4}, M_{r}=367 \cdot 2$, triclinic, $P \overline{1}, a$ $=8.327$ (3),$\quad b=7.874$ (2),$\quad c=7.645$ (3) $\AA, \quad \alpha=$ 61.89 (4) $, \quad \beta=91.46(3), \quad \gamma=93.02(3)^{\circ}, \quad V=$ 441.5 (3) $\AA^{3}, \quad Z=1, \quad D_{x}=1.38 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=$ $1.5418 \AA, \mu=35.23 \mathrm{~cm}^{-1}, F(000)=190$, room temperature, $R=0.059$ for 983 observed reflections. The conformation of the molecule is trans in the central part of the aliphatic chain while the rest differs noticeably from this arrangement, the $\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)$ torsion angle being $149.9(4)^{\circ}$. The carboxylic groups are tilted by $12.2(2)^{\circ}$ with respect to the aromatic ring planes. The two methyls are trans with respect to the $\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)$ bond.

Experimental. Prismatic specimen $0.2 \times 0.4 \times 0.4$ mm , lattice parameters refined by least squares by use of $19(\theta, \chi, \varphi)_{h k l}$ accurate measurements on a Siemens AED single-crystal diffractometer on line to a General Automation Jumbo 220 computer. Intensities collected ($2<\theta<70^{\circ}$) with a modified version (Belletti, Ugozzoli, Cantoni \& Pasquinelli, 1979) of the Lehmann \& Larsen (1974) procedure, one check reflection recorded every 50 counts, only statistical variation in intensity, 983 observed reflections [I >

[^2]0108-2701/86/030378-02\$01.50
$2 \sigma(I)]$ retained out of a total of 1486 measured independent reflections, $-10 \leq h \leq 10,-7 \leq k \leq 8$, $0 \leq l \leq 8$, data corrected for Lorentz and polarization effects but not for absorption. Direct methods with MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980), atomic coordinates of heavy atoms refined by full-matrix least squares first with isotropic temperature factors and then with anisotropic ones using SHELX76 (Sheldrick, 1976), H atoms found in a difference Fourier map and refined isotropically; $R=0.059$ and $w R=0.061$ where w $=0.3972 /\left(\sigma^{2} F+0.02812 F^{2}\right), \Sigma w\left(F_{o}-F_{c}\right)^{2}$ minimized, final difference electron density map did not show peaks $>0.26 \mathrm{e} \AA^{-3},(\Delta / \sigma)_{\max }=0.288$, scattering factors those of SHELX.

All calculations performed on a Gould Sel 32/77 computer. \dagger

Table 1 gives the atom parameters and Table 2 bond lengths, angles and selected torsion angles. Fig. 1 shows the molecule and numbering scheme.

[^3]
[^0]: * Current address: Nucleic Acid Research Institute, Costa Mesa, CA 92626, USA.

[^1]: \dagger Tables of anisotropic thermal parameters, hydrogen bond lengths and angles, torsion angles, least-squares planes and structure-factor amplitudes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42575 (18 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * Part XV: Bocelli, Ugozzoli \& Grenier-Loustalot (1985).

[^3]: \dagger Lists of structure factors, thermal parameters, H coordinates and bond lengths involving H have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42610 (9 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.
 © 1986 International Union of Crystallography

